ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 67118

Темы:   [ Вневписанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9,10,11

Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$, касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.
Прислать комментарий     Решение


Задача 67122

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Хорды $AB$ и $CD$ окружности $\omega$ пересекаются в точке $E$, причем $AD = AE = EB$. На отрезке $CE$ отметили точку $F$, так что $ED = CF$. Биссектриса угла $AFC$ пересекает дугу $DAC$ в точке $P$. Докажите, что точки $A$, $E$, $F$ и $P$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67120

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.
Прислать комментарий     Решение


Задача 67123

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10,11

Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.
Прислать комментарий     Решение


Задача 67119

Темы:   [ Пересекающиеся окружности ]
[ Построения (прочее) ]
[ Экстремальные свойства (прочее) ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .