ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что а) у этого кубика есть две соседние грани, на которых написаны соседние числа; б) таких пар соседних граней у кубика не меньше двух. Прав ли он в обоих случаях? Почему?
На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это. |
Страница: 1 [Всего задач: 5]
На плоскости нельзя расположить семь прямых и семь точек так, чтобы через каждую из точек проходили три прямые и на каждой прямой лежали три точки. Докажите это.
В каждую клетку бесконечного листа клетчатой бумаги вписано некоторое число так, что сумма чисел в любом квадрате, стороны которого идут по линиям сетки, по модулю не превосходит единицы.
Окружность, построенная на высоте AD прямоугольного
треугольника ABC как на диаметре, пересекает катет AB в точке
K, а катет AC — в точке M. Отрезок KM пересекает высоту
AD в точке L. Известно, что отрезки AK, AL и AM составляют
геометрическую прогрессию (т.е.
Целые неотрицательные числа x и y удовлетворяют равенству x² – mxy + y² = 1 (1) тогда и только тогда, когда x и y – соседние члены последовательности (2): a0 = 0, a1 = 1, a2 = m, a3 = m² – 1, a4 = m³ – 2m, a5 = m4 – 3m² + 1, ..., в которой ak+1 = mak – ak–1 для любого k 0. Докажите это.
Найдите суммы
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке