ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Доказать, что число, состоящее из 300 единиц и некоторого количества нулей, не является точным квадратом.

Вниз   Решение


Когда натуральное число имеет нечётное количество делителей?

ВверхВниз   Решение


Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

ВверхВниз   Решение


Дан прямой круговой конус и точка O. Найти геометрическое место вершин конусов, равных данному, с осями, параллельными оси данного конуса, и содержащих внутри данную точку O.

ВверхВниз   Решение


В треугольник вписана окружность радиуса r. Касательные к этой окружности, параллельные сторонам треугольника, отсекают от него три маленьких треугольника. Пусть r1, r2, r3 – радиусы вписанных в эти треугольники окружностей. Докажите, что  r1 + r2 + r3 = r.

ВверхВниз   Решение


На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.

ВверхВниз   Решение


Имеются чашечные весы и 100 монет, среди которых несколько (больше 0, но меньше 99) фальшивых. Все фальшивые монеты весят одинаково, все настоящие тоже весят одинаково, при этом фальшивая монета легче настоящей. Можно делать взвешивание на весах, заплатив перед взвешиванием одну из монет (неважно, фальшивую или настоящую). Докажите, что можно с гарантией обнаружить настоящую монету.

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)

ВверхВниз   Решение


Автор: Ионин Ю.И.

Пусть p – произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел  1 – x  и  1 + x  равна p.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 57]      



Задача 73606  (#М71)

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

  а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
  б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?

Прислать комментарий     Решение

Задача 73607  (#М72)

Темы:   [ Иррациональные уравнения ]
[ Симметрические системы. Инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10

Автор: Ионин Ю.И.

Пусть p – произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел  1 – x  и  1 + x  равна p.

Прислать комментарий     Решение

Задача 73608  (#М73)

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Дискретное распределение ]
Сложность: 3
Классы: 8,9,10

На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы
  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

Прислать комментарий     Решение

Задача 73609  (#М74)

Темы:   [ Многочлены (прочее) ]
[ Замена переменных ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 3+
Классы: 9,10,11

Многочлен p и число a таковы, что для любого числа x верно равенство  p(x) = p(a – x).
Докажите, что p(x) можно представить в виде многочлена от  (xa/2)².

Прислать комментарий     Решение

Задача 73610  (#М75)

Темы:   [ Обходы многогранников ]
[ Параллельное проектирование (прочее) ]
[ Выпуклые тела ]
[ Индукция в геометрии ]
[ Процессы и операции ]
Сложность: 6+
Классы: 10,11

а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)

б) Для любых двух вершин A и B любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника из А в В и никакие две не проходят по одному ребру. Докажите это.

в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его вершин А и В существует соединяющая эти две вершины ломаная, идущая по оставшимся рёбрам. Докажите это.

г) Докажите, что в задаче б) можно выбрать три ломаные, никакие две из которых не имеют общих вершин, за исключением точек А и В.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .