ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
соревнования:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку? Докажите, что уравнение 1/x – 1/y = 1/n имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число. Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.). Решите уравнение x² – 5y² = 1 в целых числах. Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал. Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
Докажите, что разность числа, имеющего нечётное количество цифр, и числа, записанного теми же цифрами, но в обратном порядке, делится на 99. Из книги выпал кусок, первая страница которого имеет номер 439, а номер последней записывается теми же цифрами в каком-то другом порядке. Сколько страниц в выпавшем куске? Вписанная окружность треугольника ABC касается его сторон в точках A', B' и C'. Известно, что ортоцентры треугольников ABC и A'B'C' совпадают. Верно ли, что треугольник ABC – правильный? В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами. В остроугольном треугольнике ABC высоты AA1, BB1 и CC1 пересекаются в точке H. Из точки H провели перпендикуляры к прямым B1C1 и A1C1, которые пересекли лучи CA и CB в точках P и Q соответственно. Докажите, что перпендикуляр, опущенный из точки C на прямую A1B1, проходит через середину отрезка PQ. Найти геометрическое место точек, координаты которых (x, y) удовлетворяют соотношению sin(x+y) = 0. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7958]
В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:
По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?
Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.
Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.
Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.
Найти геометрическое место точек, координаты которых (x, y) удовлетворяют соотношению sin(x+y) = 0.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7958]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке