ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 78482

Тема:   [ Подсчет двумя способами ]
Сложность: 4-
Классы: 10,11

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?
Прислать комментарий     Решение


Задача 78493

Темы:   [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10

a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию:  aik.
Доказать, что   a1 + a2 + ... + an = b1 + b2 + ...

Прислать комментарий     Решение

Задача 78500

Темы:   [ Правильные многоугольники ]
[ Раскладки и разбиения ]
[ Признаки подобия ]
Сложность: 4-
Классы: 9,10

В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

Прислать комментарий     Решение

Задача 78504

Темы:   [ Неравенства с векторами ]
[ Наибольшая или наименьшая длина ]
[ Правильные многоугольники ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4-
Классы: 9,10,11

Из центра правильного 25-угольника проведены векторы во все его вершины.
Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

Прислать комментарий     Решение

Задача 78509

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .