ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD. Какое число больше: 3111 или 1714? В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю. Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.) Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах. a1, a2, ..., an – такие числа, что a1 + a2 + ... + an = 0. Доказать, что в этом случае справедливо соотношение S = a1a2 + a1a3 + ... + an–1an ≤ 0 Докажите, что если при аффинном (не тождественном) преобразовании L
каждая точка некоторой прямой l переходит в себя, то все прямые
вида ML(M), где в качестве M берутся произвольные точки, не
лежащие на прямой l, параллельны друг другу.
Доказать, что в произвольном выпуклом 2n-угольнике найдётся диагональ, не параллельная ни одной из его сторон. Что больше: 792 или 891? Пусть A1, B1, C1, D1 — образы точек A, B, C,
D при аффинном преобразовании. Докажите, что если
Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω. Объясните поведение следующей десятичной дроби и найдите её период: 1/243 = 0,004115226337448... а) Докажите, что существует единственное аффинное
преобразование, которое переводит данную точку O в данную
точку O', а данный базис векторов
e1,
e2 —
в данный базис
e1',
e2'.
Представьте следующие числа в виде обычных и в виде десятичных дробей: На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°. На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства
необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр. Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах. На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке. Доказать, что в десятичной записи чисел 2n + 1974n и 1974n содержится одинаковое количество цифр. |
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
Доказать, что в десятичной записи чисел 2n + 1974n и 1974n содержится одинаковое количество цифр.
На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса.
Доказать, что число 100...001, в котором 21974 + 21000 – 1 нулей, составное.
Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.
Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке