ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.
Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79495  (#1)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10

На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD прямоугольником?
Прислать комментарий     Решение


Задача 79496  (#2)

Темы:   [ Гомотетия и поворотная гомотетия (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 10,11

Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время?
Прислать комментарий     Решение


Задача 79497  (#3)

Темы:   [ Неравенства с модулями ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Решите систему неравенств
    |x| < |y – z + t|,
    |y| < |x – z + t|,
    |z| < |x – y + t|,
    |t| < |x – y + z|.

Прислать комментарий     Решение

Задача 79498  (#4)

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 4+
Классы: 8,9,10

Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.
Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

Прислать комментарий     Решение

Задача 79499  (#5)

Темы:   [ Целочисленные решетки (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Метод координат на плоскости ]
Сложность: 5
Классы: 9,10,11

На координатной плоскости нарисованы круги радиусом 1/14 с центрами в каждой точке, у которой обе координаты — целые числа. Докажите, что любая окружность радиусом 100 пересечёт хотя бы один нарисованный круг.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .