Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Пирог имеет форму правильного n-угольника, вписанного в окружность радиуса 1. Из середин сторон проведены прямолинейные надрезы длины 1. Доказать, что при этом от пирога будет отрезан какой-нибудь кусок.

Вниз   Решение


В республике математиков выбрали число  α > 2  и выпустили монеты достоинствами в 1 рубль, а также в αk рублей при каждом натуральном k. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?

ВверхВниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.

ВверхВниз   Решение


Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.

ВверхВниз   Решение


Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)

ВверхВниз   Решение


Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

ВверхВниз   Решение


Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

ВверхВниз   Решение


Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?

ВверхВниз   Решение


Дан треугольник ABC. На продолжениях сторон AB и CB за точку B взяты соответственно точки C1 и A1 так, что  AC = A1C = AC1.
Докажите, что описанные окружности треугольников ABA1 и CBC1 пересекаются на биссектрисе угла B.

ВверхВниз   Решение


Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон.

ВверхВниз   Решение


В первой кучке лежит 100 конфет, а во второй — 200 конфет. За ход можно взять любое количество конфет из любой кучки. Выигрывает взявший последнюю. Кто выигрывает при правильной игре?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 86553  (#18.1)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.
Прислать комментарий     Решение


Задача 30433  (#18.2)

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Игры-шутки ]
Сложность: 3-
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Прислать комментарий     Решение

Задача 86555  (#18.3)

Темы:   [ Замощения костями домино и плитками ]
[ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.
Прислать комментарий     Решение


Задача 86556  (#18.4)

Темы:   [ Теория игр (прочее) ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
Прислать комментарий     Решение


Задача 86557  (#18.5)

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 6,7,8

В первой кучке лежит 100 конфет, а во второй — 200 конфет. За ход можно взять любое количество конфет из любой кучки. Выигрывает взявший последнюю. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .