Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Каждый отрезок покрашен в один из K цветов. Петя хочет покрасить каждую точку в один из этих цветов так, чтобы не нашлось двух точек и отрезка между ними, окрашенных в один цвет. Всегда ли Пете это удастся, если
  a)  K = 7;   б)  K = 10?

Вниз   Решение


Петя и Вася играют в такую игру. Сначала на столе лежит 11 кучек по 10 камней. Игроки ходят по очереди, начинает Петя. Каждым ходом игрок берёт 1, 2 или 3 камня, но Петя каждый раз выбирает все камни из любой одной кучки, а Вася всегда выбирает все камни из разных кучек (если их больше одного). Проигрывает тот, кто не может сделать ход. Кто из игроков может обеспечить себе победу, как бы ни играл его соперник?

ВверхВниз   Решение


Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

ВверхВниз   Решение


Внутри параллелограмма $ABCD$ взята такая точка $P$, что  ∠$PDA$ = ∠$PBA$.  Пусть Ω – вневписанная окружность треугольника $PAB$, лежащая против вершины $A$, а ω – вписанная окружность треугольника $PCD$. Докажите, что одна из общих касательных к Ω и ω параллельна $AD$.

ВверхВниз   Решение


У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

ВверхВниз   Решение


а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить  3n + 1  звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.

ВверхВниз   Решение


Автор: Фомин Д.

Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек  n + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



Задача 98111

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
[ Связность и разложение на связные компоненты ]
Сложность: 4+
Классы: 8,9

n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

Прислать комментарий     Решение

Задача 98130

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Соображения непрерывности ]
Сложность: 4+
Классы: 8,9

Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
(B1C1 || PA,  C1A1 || PB,  A1B1 || PC). Через точки A1, B1, C1 проведены прямые, параллельные соответственно BC, CA и AB. Докажите, что эти прямые пересекаются в точке, лежащей на описанной окружности треугольника A1B1C1.

Прислать комментарий     Решение

Задача 98132

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 7,8,9

Автор: Фомин Д.

Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек  n + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

Прислать комментарий     Решение

Задача 98142

Темы:   [ Делимость чисел. Общие свойства ]
[ Раскладки и разбиения ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Пусть n и b – натуральные числа. Через  V(n, b)  обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12,  так что  V(36, 2) = 5).  Докажите, что  V(n, b) < n/b.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .