Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Слоны, носороги, жирафы. Во всех зоопарках, где есть слоны и носороги, нет жирафов. Во всех зоопарках, где есть носороги и нет жирафов, есть слоны. Наконец, во всех зоопарках, где есть слоны и жирафы, есть и носороги. Может ли быть такой зоопарк, в котором есть слоны, но нет ни жирафов, ни носорогов?

Вниз   Решение


Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

ВверхВниз   Решение


В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.

ВверхВниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

ВверхВниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


В основании прямой призмы лежит прямоугольный треугольник с катетами 1 и 10 . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.


ВверхВниз   Решение


Найдите все решения ребуса:  АРКА + РКА + КА + А = 2014.  (Различным буквам соответствуют различные цифры, а одинаковым буквам – одинаковые цифры.)

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Три шара попарно касаются друг друга и плоскости треугольника в его вершинах. Найдите радиусы шаров.

ВверхВниз   Решение


В большой квадратный зал привезли два квадратных ковра, сторона одного ковра вдвое больше стороны другого. Когда их положили в противоположные углы зала, они в два слоя накрыли 4 м², а когда их положили в соседние углы, то 14 м². Каковы размеры зала?

ВверхВниз   Решение


Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32823  (#01)

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 7,8

В чемпионате России по футболу участвуют 16 команд. Каждая команда играет с каждой из остальных по 2 матча.
  а) Сколько матчей за сезон должен сыграть "Уралан"?
  б) Сколько всего матчей играется за один сезон?

Прислать комментарий     Решение

Задача 32824  (#02)

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Степень вершины ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть   а) 34;   б) 35;   в) 56 игр?

Прислать комментарий     Решение

Задача 32825  (#03)

Темы:   [ Турниры и турнирные таблицы ]
[ Соображения непрерывности ]
Сложность: 3-
Классы: 7,8,9

Сборная России по футболу выиграла у сборной Туниса со счетом  9 : 5.  Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.

Прислать комментарий     Решение

Задача 98188  (#04)

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 3+
Классы: 6,7,8

Автор: Рубин А.

Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Прислать комментарий     Решение

Задача 32827  (#05)

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 7,8,9

Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:
  1) Каждая команда сыграла с каждой ровно по одному разу.
  2) Каждая команда чередовала свои игры – то на плохой стороне, то на хорошей стороне двора.
    а) Удастся ли это сделать, если в турнире принимают участие 10 команд?
    б) Можно ли при этом составить расписание так, чтобы каждый день каждая команда играла ровно одну игру?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .