ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP. В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$. Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство |
Страница: 1 2 >> [Всего задач: 7]
Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001.
Покажите, как разбить пространство
В треугольник ABC вписана окружность с центром O. Медиана AD пересекает её в точках X и Y. Найдите угол XOY, если AC = AB + AD.
Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство
Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке