Страница: 1
2 >> [Всего задач: 6]
Задача
98377
(#1)
|
|
Сложность: 2+ Классы: 6,7,8
|
Аня, Боря и Вася составляли слова из заданных букв. Все составили разное
число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?
Задача
98378
(#2)
|
|
Сложность: 3- Классы: 6,7,8
|
Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному
разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.
Отрезки AB и CD лежат на двух сторонах угла BOD (A лежит между O и B, C – между O и D). Через середины отрезков AD и BC проведена прямая, пересекающая стороны угла в точках M и N (M, A и B лежат на одной стороне угла; N, C и D – на другой).
Докажите, что
OM : ON = AB : CD.
Задача
98381
(#4')
|
|
Сложность: 3 Классы: 8,9
|
Незнайка решал уравнение, в левой части которого стоял многочлен третьей
степени с целыми коэффициентами, а в правой – 0. Он нашёл корень 1/7. Знайка, заглянув к нему в тетрадь, увидел только первые два слагаемых многочлена: 19x³ + 98x² и сразу сказал, что ответ неверен. Обоснуйте ответ Знайки.
Задача
98380
(#4)
|
|
Сложность: 3 Классы: 7,8,9,10
|
а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти
произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Страница: 1
2 >> [Всего задач: 6]