ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём лабиринтом шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе – плохим. Каких лабиринтов больше – хороших или плохих?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 98396

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Двоичная система счисления ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

а) На доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После семи таких операций на доске будет только одно число. Может ли оно равняться 97?
б) На доске выписаны числа 1, 21, 2², 2³, ..., 210. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После нескольких таких операций на доске будет только одно число. Чему оно может быть равно?

Прислать комментарий     Решение

Задача 98397

Темы:   [ Четырехугольники (прочее) ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Внутренняя точка M выпуклого четырёхугольника ABCD такова, что треугольники AMB и CMD – равнобедренные с углом величиной 120° при вершине M.
Докажите существование такой точки N, что треугольники BNC и DNA – правильные.

Прислать комментарий     Решение

Задача 98398

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Назовём лабиринтом шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе – плохим. Каких лабиринтов больше – хороших или плохих?

Прислать комментарий     Решение

Задача 98372

Темы:   [ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Движения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

Прислать комментарий     Решение

Задача 98399

Темы:   [ Кооперативные алгоритмы ]
[ Принцип Дирихле (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 8,9,10

a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту.

б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .