Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Вниз   Решение


Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

ВверхВниз   Решение


Покажите, как разбить пространство
  а) на одинаковые тетраэдры,
  б) на одинаковые равногранные тетраэдры
(тетраэдр называется равногранным, если все его грани – равные треугольники).

ВверхВниз   Решение


Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.

ВверхВниз   Решение


Пусть a, b, c – натуральные числа.
а) Докажите, что если  НОК(a, a + 5) = HOK(b, b + 5),  то  a = b.
б) Могут ли  НОК(a, b)  и  НОК(а + с, b + с)  быть равны?

ВверхВниз   Решение


Автор: Фольклор

На плоскости нарисован чёрный равносторонний треугольник. Имеется девять треугольных плиток того же размера и той же формы. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного треугольника (хотя бы одну точку внутри него). Как это сделать?

ВверхВниз   Решение


Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

ВверхВниз   Решение


Автор: Фольклор

Числа  1, 2, 3, ..., n  записываются в некотором порядке:  a1, a2, a3, ..., an.  Берётся сумма  S = a1/1 + a2/2 + ... + an/n.  Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках  a1, a2, a3, ..., an)  встретились все целые числа от n до  n + 100.

 

ВверхВниз   Решение


Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

ВверхВниз   Решение


На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 

ВверхВниз   Решение


Три косца за три дня скосили траву с трёх гектаров. С какой площади скосят траву пять косцов за пять дней?

ВверхВниз   Решение


Автор: Гришин А.

Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.

ВверхВниз   Решение


Автор: Фольклор

а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.)

б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.

ВверхВниз   Решение


На шахматной доске размером 8×8 отметили 17 клеток.
Докажите, что из них можно выбрать две так, что коню нужно не менее трёх ходов для попадания с одной из них на другую.

ВверхВниз   Решение


Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
  а)  P(n) ≥ n – 3;
  б)  P(n) ≤ 2n – 7;
  в)  P(n) ≤ 2n – 10  при  n ≥ 13.

ВверхВниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

ВверхВниз   Решение


12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь – дважды". – "А теперь – трижды", – сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно подсчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98400  (#1)

Темы:   [ Формула включения-исключения ]
[ Куб ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три слоя 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.

Прислать комментарий     Решение

Задача 98401  (#2)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

Прислать комментарий     Решение

Задача 108161  (#3)

Темы:   [ Признаки и свойства параллелограмма ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

Прислать комментарий     Решение

Задача 98403  (#4)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8,9

12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь – дважды". – "А теперь – трижды", – сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно подсчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?

Прислать комментарий     Решение

Задача 98404  (#5)

Темы:   [ Раскраски ]
[ НОД и НОК. Взаимная простота ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4-
Классы: 8,9,10

Автор: Герко А.А.

Назовём крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в два цвета (для каждых конкретных m и n своя раскраска), что каждые две клетки, соединённые одним ходом крокодила, будут покрашены в разные цвета.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .