Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Вниз   Решение


а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

ВверхВниз   Решение


Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)

ВверхВниз   Решение


Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

ВверхВниз   Решение


Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки?

ВверхВниз   Решение


Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

ВверхВниз   Решение


Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.

ВверхВниз   Решение


Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?

ВверхВниз   Решение


Верно ли, что на графике функции  y = x³  можно отметить такую точку A, а на графике функции  y = x³ + |x| + 1  – такую точку B, что расстояние AB не превысит 1/100?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 105132  (#1)

Темы:   [ Тангенсы и котангенсы углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9,10,11

Тангенсы углов треугольника – целые числа. Чему они могут быть равны?

Прислать комментарий     Решение

Задача 98574  (#2)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 10,11

Верно ли, что на графике функции  y = x³  можно отметить такую точку A, а на графике функции  y = x³ + |x| + 1  – такую точку B, что расстояние AB не превысит 1/100?

Прислать комментарий     Решение

Задача 105141  (#3)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.

Прислать комментарий     Решение

Задача 105135  (#4)

Темы:   [ Теория алгоритмов (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 9,10,11

Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?

Прислать комментарий     Решение

Задача 108119  (#5)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 8,9

Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .