ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
Докажите, что точки, соответствующие комплексным числам a, b, c,
лежат на одной прямой тогда и только тогда, когда число
а) Докажите, что если A, B, C и D — произвольные точки плоскости, то
AB . CD + BC . AD в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник. г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
Докажите, что если a, b, c и d — длины последовательных сторон
выпуклого четырехугольника ABCD, а m и n — длины его диагоналей, то
m2n2 = a2c2 + b2d2 - 2abcd cos(A + C) (Бретшнейдер).
Даны треугольник ABC и прямая l, проходящая через центр O вписанной
окружности. Обозначим через A1 (соответственно B1, C1) основание
перпендикуляра, опущенного на прямую l из точки A (соответственно B,
C), а через A2 (соответственно B2, C2) обозначим точку вписанной
окружности, диаметрально противоположную точке касания со стороной BC
(соответственно CA, AB). Докажите, что прямые A1A2, B1B2, C1C2,
пересекаются в одной точке, и эта точка лежит на вписанной окружности.
Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно
треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите,
что прямая Симсона точки B относительно треугольника ACD перпендикулярна
прямой Эйлера треугольника ACD.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке