Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Найти все действительные решения системы
x³ + y³ = 1,
x4 + y4 = 1.
Квадратная таблица в n² клеток заполнена числами от 1 до n так, что в каждой строке и каждом столбце встречаются все эти числа. Если n нечётно и таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встретятся все эти числа 1, 2, 3,..., n. Доказать.
Решить в целых числах уравнение x³ – 2y³ – 4z³ = 0.
Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn.
а) При n = 9 найти нумерацию, при которой сумма номеров сторон для всех треугольников A1OA2, ..., AnOA1 одинакова.
б) Доказать, что при n = 10 такой нумерации осуществить нельзя.
|
|
|
Сложность: 3+ Классы: 10,11
|
Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты
соответственно точки C2, A2, B2 так, что A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1. Доказать, что A2C2 || AC, C2B2 || CB,
B2A2 || BA.
Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 1984]