ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1984]      



Задача 78036

Тема:   [ Симметрические системы. Инволютивные преобразования ]
Сложность: 3+
Классы: 9,10,11

Найти все действительные решения системы
   x³ + y³ = 1,
   x4 + y4 = 1.

Прислать комментарий     Решение

Задача 78039

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 11

Квадратная таблица в n² клеток заполнена числами от 1 до n так, что в каждой строке и каждом столбце встречаются все эти числа. Если n нечётно и таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встретятся все эти числа 1, 2, 3,..., n. Доказать.

Прислать комментарий     Решение

Задача 78042

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x³ – 2y³ – 4z³ = 0.

Прислать комментарий     Решение

Задача 78049

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9

Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn.
  а) При  n = 9  найти нумерацию, при которой сумма номеров сторон для всех треугольников A1OA2, ..., AnOA1 одинакова.
  б) Доказать, что при  n = 10  такой нумерации осуществить нельзя.
Прислать комментарий     Решение


Задача 78052

Темы:   [ Подобные треугольники ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 10,11

Дан треугольник ABC. На сторонах AB, BC, CA взяты соответственно точки C1, A1, B1 так, что  AC1 : C1B = BA1 : A1C = CB1 : B1A = 1 : n.  На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2 так, что  A1C2 : C2B1 = B1A2 : A2C1 = C1B2 : B2A1 = n : 1.  Доказать, что  A2C2 || AC,  C2B2 || CB,   B2A2 || BA.
Прислать комментарий     Решение


Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .