ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 78284

Темы:   [ Наибольшая или наименьшая длина ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10

Даны два пересекающихся луча и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна.
Прислать комментарий     Решение


Задача 78286

Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
[ Системы счисления (прочее) ]
Сложность: 3+
Классы: 9,10,11

Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности 1, 2, 3, 5, 8, 13, ..., an = an - 1 + an - 2,....
Прислать комментарий     Решение


Задача 78294

Темы:   [ Делимость чисел. Общие свойства ]
[ Комбинаторика орбит ]
[ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10

В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол  α ≠ 2π   совмещается сам с собой. Доказать, что n – число составное.

Прислать комментарий     Решение

Задача 78285

Тема:   [ Разрезания на параллелограммы ]
Сложность: 4-
Классы: 10,11

На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы.
Прислать комментарий     Решение


Задача 78293

Темы:   [ Алгебраические неравенства (прочее) ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 9,10

Как надо расположить числа 1, 2, ..., 1962 в последовательности a1, a2, ..., a1962, чтобы сумма  |a1a2| + |a2a3| + ... + |a1961a1962| + |a1962a1|  была наибольшей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .