Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 30]
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны два пересекающихся луча
AС и
BD. На этих лучах выбираются точки
M и
N (соответственно) так, что
AM =
BN. Найти положение точек
M и
N, при котором длина отрезка
MN минимальна.
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что любое натуральное число можно представить в виде суммы нескольких
различных членов последовательности
1, 2, 3, 5, 8, 13, ...,
an =
an - 1 +
an - 2,....
|
|
Сложность: 3+ Классы: 9,10
|
В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол α ≠ 2π совмещается сам с собой. Доказать, что n – число составное.
|
|
Сложность: 4- Классы: 10,11
|
На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные
равнобедренные треугольники с острым углом при вершине. Доказать, что
получившуюся фигуру нельзя разбить на параллелограммы.
|
|
Сложность: 4- Классы: 9,10
|
Как надо расположить числа 1, 2, ..., 1962 в последовательности
a1, a2, ..., a1962, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a1961 – a1962| + |a1962 – a1| была наибольшей?
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 30]