ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа? BK – биссектриса треугольника ABC. Известно, что ∠AKB : ∠CKB = 4 : 5. Найдите разность углов A и C треугольника ABC. Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 . Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире? Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M. При этом BM = AB, ∠BAM = 35°, ∠CAM = 15°. Пусть числа a и b определены равенством a/b = [a0; a1, a2, ..., an]. Докажите, что уравнение ax – by = 1 c неизвестными x и y имеет решением одну из пар (Qn–1, Pn–1) или (– Qn–1, – Pn–1), где Pn–1/Qn–1 – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением? Найдите сторону квадрата, вписанного в окружность радиуса 8. Дан остроугольный треугольник ABC. На продолжениях BB1 и CC1 его высот за точки B1 и C1 выбраны соответственно точки P и Q так, что угол PAQ – прямой. Пусть AF – высота треугольника APQ. Докажите, что угол BFC – прямой.
В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)
Точки M и N лежат на стороне AC треугольника ABC, причём ∠ABM = ∠C и ∠CBN = ∠A. Докажите, что треугольник BMN равнобедренный. Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны. |
Страница: << 1 2 3 4 >> [Всего задач: 20]
На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.
Решите уравнение xx4 = 4 (x > 0).
Докажите, что ни для каких векторов a, b, c не могут одновременно выполняться три неравенства
На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD прямоугольником?
На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?
Страница: << 1 2 3 4 >> [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке