ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что существует проективное преобразование, которое
данную окружность переводит в окружность, а данную точку, лежащую
внутри окружности, переводит в центр образа.
Попробуйте расшифровать отрывок из книги "Алиса в Зазеркалье": " — БЕРПИ Э ЙДЕМГОКВЭЫ БИБЕО-ЖАКЙПЧ ЗВЕЛЕ, — ЗБИСИВ ФИВМИУ-КЕВМИУ ПЕЛЕВЧЖЕ ДГОСГАМОВЧЖЕ, — ЕЖЕ ЕСЖИЬИОМ МЕВЧБЕ МЕ, ЬМЕ Э ЦЕЬЙ, ЬМЕКЮ ЕЖЕ ЕСЖИЬИВЕ, — ЖА КЕВЧФО, ЖА ТОЖЧФО". Текст зашифрован так: десять букв ("а", "е", "и", "й", "о", "у", "ы", "э", "ю", "я") разбиты на пары, и каждая из этих букв в тексте заменена второй из пары. Все остальные буквы точно так же разбиты на пары. |
Страница: 1 2 >> [Всего задач: 6]
Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что PA = PK и QA = QK.
В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке