Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
|
|
Сложность: 4- Классы: 9,10,11
|
Дан картонный прямоугольник со сторонами a см и b см, где b/2 < a < b.
Докажите, что его можно разрезать на три куска, из которых складывается квадрат.
В однокруговом турнире участвовали 15 команд.
а) Докажите, что хотя бы в одной игре встретились команды, которые
перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
б) Могла ли такая игра быть единственной?
Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?
Трапеция с основаниями AD и BC описана вокруг окружности, E – точка пересечения её диагоналей. Докажите, что угол AED не может быть острым.
|
|
Сложность: 4- Классы: 9,10,11
|
В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
∠EMK = 90°.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]