Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
a) Написаны 2007 натуральных чисел, больших 1. Докажите, что удастся зачеркнуть одно число так, чтобы произведение оставшихся можно было представить в виде разности квадратов двух натуральных чисел.
б) Написаны 2007 натуральных чисел, больших 1, одно из которых равно 2006. Оказалось, что есть только одно такое число среди написанных, что произведение оставшихся представляется в виде разности квадратов двух натуральных чисел. Докажите, что это число – 2006.
|
|
Сложность: 3+ Классы: 8,9,10
|
На какое наибольшее число равных невыпуклых многоугольников можно разрезать квадрат так, чтобы все стороны многоугольников были параллельны сторонам квадрата и никакие два из этих многоугольников не получались друг из друга параллельным переносом?
|
|
Сложность: 3+ Классы: 8,9,10
|
На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
|
|
Сложность: 3+ Классы: 7,8,9
|
В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]