Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 10,11
|
Когда из бассейна сливают воду, уровень
h воды в нём
меняется в зависимости от времени
t по закону
h(t)=at2+bt+c,
а в момент
t0 окончания слива выполнены равенства
h(
t0)
=h'(
t0)
=0
. За сколько часов вода из бассейна сливается
полностью, если за первый час уровень воды в нём уменьшается вдвое?
|
|
Сложность: 4+ Классы: 10,11
|
Моток ниток проткнули насквозь 72 цилиндрическими спицами
радиуса 1 каждая, в результате чего он приобрел форму цилиндра радиуса
6. Могла ли высота этого цилиндра оказаться также равной 6?
|
|
Сложность: 5- Классы: 10,11
|
На плоскости даны оси координат с одинаковым, но не
обозначенным масштабом и график функции
y= sin x, x(0;α).
Как с помощью циркуля и линейки построить касательную к этому графику
в заданной его точке, если:
а)
α(
;π)
;
б)
α(0
;)
?
|
|
Сложность: 5- Классы: 8,9,10
|
Через каждую вершину четырехугольника проведена прямая,
проходящая через центр вписанной в него окружности. Три из этих прямых
обладают тем свойством, что каждая из них делит площадь
четырехугольника на две равновеликие части.
a) Докажите, что и четвертая прямая обладает тем же свойством.
б) Какие значения могут принимать углы этого четырехугольника, если
один из них равен
72
o ?
|
|
Сложность: 5- Классы: 9,10,11
|
Для каждого простого p найдите наибольшую натуральную степень числа p!, на которую делится число (p²)!.
Страница: 1
2 >> [Всего задач: 6]