Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 39]
|
|
Сложность: 3+ Классы: 9,10,11
|
В одной из вершин шестиугольника лежит золотая монета, а в остальных ничего не лежит. Кощей Бессмертный чахнет над златом и каждое утро снимает с одной вершины произвольное количество монет, после чего тут же кладёт на соседнюю вершину в шесть раз больше монет. Если к исходу какого-то дня во всех вершинах будет поровну монет, Кощей станет Властелином Мира. Докажите, что хоть злата у него сколько угодно, но Властелином Мира ему не бывать.
|
|
Сложность: 3+ Классы: 9,10,11
|
Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?
Существует ли тетраэдр ABCD, в котором AB = AC = AD = BC, а суммы плоских углов при каждой из вершин В и С равны по 150°?
|
|
Сложность: 3+ Классы: 10,11
|
При каких значениях x и y верно равенство x² + (1 – y)² + (x – y)² = ⅓?
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан остроугольный треугольник ABC. Окружности с центрами A и C проходят через точку B, вторично пересекаются в точке F и пересекают описанную окружность ω треугольника ABC в точках D и E. Отрезок BF пересекает окружность ω в точке O. Докажите, что O – центр описанной окружности треугольника DEF.
Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 39]