ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 65032  (#6)

Темы:   [ Пересекающиеся окружности ]
[ Три окружности одного радиуса ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9

Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.

Прислать комментарий     Решение

Задача 65033  (#7)

Темы:   [ Против большей стороны лежит больший угол ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что  PB = QC.  Докажите, что  PQ < BC.

Прислать комментарий     Решение

Задача 65034  (#8)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-

Окружность, вписанная в прямоугольный треугольник ABC  (∠B = 90°),  касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. A2, C2 – точки, симметричные точке B1 относительно прямых BC, AB соответственно. Докажите, что прямые A1A2, C1C2 пересекаются на медиане треугольника ABC.

Прислать комментарий     Решение

Задача 65035  (#9)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

Прислать комментарий     Решение

Задача 65036  (#10)

Темы:   [ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD диагонали пересекаются в точке O. На боковой стороне CD выбрана точка M, а на основаниях BC и AD – точки P и Q так, что отрезки MP и MQ параллельны диагоналям трапеции. Докажите, что прямая PQ проходит через точку O.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .