ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 65188  (#3)

Темы:   [ Десятичная система счисления ]
[ Задачи на проценты и отношения ]
[ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9

Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.

Прислать комментарий     Решение

Задача 65194  (#3)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 9,10

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

Прислать комментарий     Решение

Задача 65199  (#3)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Гомотетия помогает решить задачу ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10

Клетки бесконечного клетчатого листа бумаги раскрасили в чёрный и белый цвета в шахматном порядке. Пусть X – треугольник площади S с вершинами в узлах сетки. Покажите, что есть такой подобный X треугольник с вершинами в узлах сетки, что площадь его белой части равна площади чёрной части и равна S.

Прислать комментарий     Решение

Задача 65203  (#3)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Композиции симметрий ]
Сложность: 4-
Классы: 9,10,11

Автор: Ивлев Ф.

На основании AC равнобедренного треугольника ABC взяли произвольную точку X, а на боковых сторонах – точки P и Q так, что XPBQ – параллелограмм. Докажите, что точка Y, симметричная точке X относительно PQ, лежит на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65209  (#3)

Темы:   [ Задачи на смеси и концентрации ]
[ Линейные рекуррентные соотношения ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 10,11

У Ивана-царевича есть два сосуда емкостью по 1 л, один из которых полностью заполнен обычной водой, а в другом находится a л живой воды,
0 < a < 1.  Он может переливать только из сосуда в сосуд любой объем жидкости до любого уровня без переполнений и хочет за конечное число таких переливаний получить 40-процентный раствор живой воды в одном из сосудов. При каких значениях a Иван-царевич сможет это сделать? Считайте, что уровень жидкости в каждом из сосудов можно точно измерить в любой момент времени.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .