ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 65187  (#2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Внутри параллелограмма ABCD отметили точку E так, что  CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.

Прислать комментарий     Решение

Задача 65193  (#2)

Темы:   [ Последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10

По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?
Прислать комментарий     Решение


Задача 65198  (#2)

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10

В турнире по футболу участвует 2n команд  (n > 1).  В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели  2n – 1  тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.

Прислать комментарий     Решение

Задача 65202  (#2)

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 10,11

В прошлом году Миша купил смартфон, который стоил целое четырёхзначное число рублей. Зайдя в магазин в этом году, он заметил, что цена смартфона выросла на 20% и при этом состоит из тех же цифр, но в обратном порядке. Какую сумму Миша потратил на смартфон?

Прислать комментарий     Решение

Задача 65208  (#2)

Темы:   [ Тригонометрические уравнения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 10,11

Какое наибольшее количество множителей вида     можно вычеркнуть в левой части уравнения     так, чтобы число его натуральных корней не изменилось?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .