Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Задача
65666
(#2)
|
|
Сложность: 3+ Классы: 7,8,9
|
За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?
Задача
65672
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике ABC на продолжении медианы CM за точку C отметили точку K так, что AM = CK. Известно, что угол BMC равен 60°.
Докажите, что AC = BK.
Задача
65678
(#2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
Задача
65683
(#2)
|
|
Сложность: 3 Классы: 9,10,11
|
Существует ли такое значение x, что выполняется равенство arcsin2x + arccos2x = 1?
Задача
65689
(#2)
|
|
Сложность: 4- Классы: 10,11
|
Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г.
Можно ли разложить все эти гири на чаши весов так, чтобы весы находились в равновесии?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]