ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66252  (#8.1)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 7,8,9

В треугольнике ABC высота AH делит медиану BM пополам.
Докажите, что из медиан треугольника ABM можно составить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 66253  (#8.2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

Описанная окружность треугольника ABC пересекает стороны AD и CD параллелограмма ABCD в точках K и L. Пусть M – середина дуги KL, не содержащей точку B. Докажите, что  DMAC.

Прислать комментарий     Решение

Задача 66254  (#8.3)

Темы:   [ Трапеции (прочее) ]
[ ГМТ - прямая или отрезок ]
[ Две пары подобных треугольников ]
[ Гомотетия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Даны трапеция ABCD и перпендикулярная её основаниям AD и BC прямая l. По l движется точка X. Перпендикуляры, опущенные из A на BX и из D на CX пересекаются в точке Y. Найдите ГМТ  Y.

Прислать комментарий     Решение

Задача 66255  (#8.4)

Темы:   [ Правильные многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 8,9

Автор: Белухов Н.

Можно ли разрезать правильный десятиугольник по нескольким диагоналям и сложить из получившихся кусков два правильных многоугольника?

Прислать комментарий     Решение

Задача 66256  (#8.5)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 7,8,9

На прозрачном листе бумаги отмечены три точки.
Докажите, что лист можно согнуть по некоторой прямой так, чтобы эти точки оказались в вершинах равностороннего треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .