ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Построить треугольник по двум сторонам так, чтобы медианы этих сторон были взаимно перпендикулярны. Сколько корней имеет уравнение sin x=x/100 ? Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются. На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность. Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре? Сторона основания ABCD правильной пирамиды SABCD равна
1) объём пирамиды CMSK; 2) угол между прямыми CM и SK; 3) расстояние между прямыми CM и SK. Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n. На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью? Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне. Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды. а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
|
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]
В правильной треугольной пирамиде SABCD с высотой, не меньшей h ,
расположена полусфера радиуса r=
В правильную треугольную пирамиду вписаны два шара. Первый шар радиуса r касается основания пирамиды и её боковых граней. Второй шар касается первого шара внешним образом и также боковых граней пирамиды. Найдите сумму объёмов шаров, если объём пирамиды является минимально возможным.
В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых граней, а второй шар касается первого шара внешним образом и боковых рёбер пирамиды. Радиус первого шара равен r . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и также боковых рёбер пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке