Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Построить треугольник по двум сторонам так, чтобы медианы этих сторон были взаимно перпендикулярны.

Вниз   Решение


Сколько корней имеет уравнение sin x=x/100 ?

ВверхВниз   Решение


Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются.

ВверхВниз   Решение


На окружности даны три точки A,B,C . Построить (циркулем и линейкой) на этой окружности четвёртую точку D так, чтобы в полученный четырёхугольник можно было бы вписать окружность.

ВверхВниз   Решение


Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?

ВверхВниз   Решение


Сторона основания ABCD правильной пирамиды SABCD равна , угол между боковым ребром пирамиды и плоскостью основания равен . Точка M – середина ребра SD, точка K – середина ребра AD. Найдите:

1) объём пирамиды CMSK;

2) угол между прямыми CM и SK;

3) расстояние между прямыми CM и SK.

ВверхВниз   Решение


Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.

ВверхВниз   Решение


На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?

ВверхВниз   Решение


Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.

ВверхВниз   Решение


Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

ВверхВниз   Решение


а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
б) Тот же вопрос, если и тех, и других монет - по 12.

Вверх   Решение

Задачи

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]      



Задача 110958

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде SABCD с высотой, не меньшей h , расположена полусфера радиуса r= так, что её касаются все боковые грани пирамиды, а центр полусферы лежит на основании ABC пирамиды. Найдите наименьшее возможное значение объёма пирамиды.
Прислать комментарий     Решение


Задача 110989

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильную треугольную пирамиду вписаны два шара. Первый шар радиуса r касается основания пирамиды и её боковых граней. Второй шар касается первого шара внешним образом и также боковых граней пирамиды. Найдите сумму объёмов шаров, если объём пирамиды является минимально возможным.
Прислать комментарий     Решение


Задача 110990

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110991

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых граней, а второй шар касается первого шара внешним образом и боковых рёбер пирамиды. Радиус первого шара равен r . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110992

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и также боковых рёбер пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .