Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.

Вниз   Решение


В равнобедренную трапецию ABCD ( AB=CD ) вписана окружность. Пусть M – точка касания окружности со стороной CD , K – точка пересечения окружности с отрезком AM , L – точка пересечения окружности с отрезком BM . Вычислите величину + .

ВверхВниз   Решение


На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

ВверхВниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 258]      



Задача 115770

Темы:   [ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

Прислать комментарий     Решение

Задача 115857

Темы:   [ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство

Прислать комментарий     Решение

Задача 30928

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 6,7

Докажите, что если  x + y + z ≥ xyz,  то  x² + y² + z² ≥ xyz.

Прислать комментарий     Решение

Задача 55238

Темы:   [ Вспомогательные подобные треугольники ]
[ Экстремальные свойства треугольника (прочее) ]
[ Неравенство Коши ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

Прислать комментарий     Решение

Задача 64319

 [Неравенство Птолемея]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Теорема Птолемея ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство  AB·CD + AC·BD > AD·BC.

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .