Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

Вниз   Решение


Предположим, что цепные дроби   сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена  x² – px + q = 0.  С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328):   xn+1 = xn = .  Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.

ВверхВниз   Решение


В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

ВверхВниз   Решение


Пусть многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  причем  |x1| > |x2| > ... > |xn|.  В задаче  60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа     На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов  P0(x), P1(x), P2(x), ...,  что  P0(x) = P(x)  и многочлен Pk(x) имеет корни     Пусть     Докажите, что

  а)  

  б)  

ВверхВниз   Решение


Докажите, что  
Числа Pkl(n) определены в задаче 61525.

Вверх   Решение

Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]      



Задача 108853

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

Найдите наибольший возможный угол между плоскостью боковой грани и не принадлежащим ей боковым ребром правильной четырёхугольной пирамиды.
Прислать комментарий     Решение


Задача 108855

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .
Прислать комментарий     Решение


Задача 109201

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4. Точка E выбрана на ребре SC , причём SE=SC , а точка F является ортогональной проекцией точки E на плоскость ABCD . Через точку E проведена касательная к сфере, пересекающая плоскость BSD в точке P , причём PEF = arccos . Найдите PE .
Прислать комментарий     Решение


Задача 109202

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана сфера. Сторона основания пирамиды равна 8, а высота пирамиды равна 3. Точка M – середина ребра SD , а точка K является ортогональной проекцией точки M на плоскость ABCD . Через точку M проведена касательная к сфере, пересекающая плоскость ASC в точке N , причём NMK = arccos (-) . Найдите NM .
Прислать комментарий     Решение


Задача 109260

Темы:   [ Ортоцентрический тетраэдр ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Все ребра треугольной пирамиды ABCD касаются некоторого шара. Три отрезка, соединяющие середины скрещивающихся рёбер AB и CD , AC и BD , AD и BC , равны между собой, ABC = 100o . Найдите отношение высот, опущенных из вершин A и B .
Прислать комментарий     Решение


Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .