Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 329]      



Задача 54640

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Касающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9

На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?

Прислать комментарий     Решение


Задача 58341

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5-
Классы: 9,10,11

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.
Прислать комментарий     Решение


Задача 65375

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC серединный перпендикуляр к BC пересекает прямые AB и AC в точках AB и AC соответственно. Обозначим через Oa центр описанной окружности треугольника AABAC. Аналогично определим Ob и Oc. Докажите, что описанная окружность треугольника OaObOc касается описанной окружности исходного треугольника.

Прислать комментарий     Решение

Задача 65802

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Осевая и скользящая симметрии (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
  а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
  б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.

Прислать комментарий     Решение

Задача 55455

Темы:   [ Окружности (построения) ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность S . С помощью циркуля и линейки постройте окружность, проходящую через точки A и B и касающуюся окружности S .
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .