ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В правильной четырёхугольной пирамиде угол между боковыми рёбрами, лежащими в одной грани, равен . Через точку, лежащую на одном из боковых рёбер, проведена прямая, перпендикулярная этому ребру и пересекающая высоту в середине. Известно, что длина отрезка этой прямой, лежащего внутри пирамиды, равна 6. Найдите боковое ребро пирамиды.

Вниз   Решение


Через точку пересечения диагоналей трапеции проведена прямая, параллельная основаниям.
Найдите длину отрезка этой прямой, заключённого внутри трапеции, если основания трапеции равны a и b.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 92]      



Задача 32091

Темы:   [ Пятиугольники ]
[ Неравенства с площадями ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перенос помогает решить задачу ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Прислать комментарий     Решение


Задача 57056

Темы:   [ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 8,9,10

В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.
Прислать комментарий     Решение


Задача 57057

Тема:   [ Пятиугольники ]
Сложность: 5
Классы: 9

а) Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная окружность треугольника CKE касается прямой BC.
б) Пусть a — длина стороны правильного пятиугольника, d — длина его диагонали. Докажите, что  d2 = a2 + ad.
Прислать комментарий     Решение


Задача 57059

Темы:   [ Пятиугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5
Классы: 8,9,10

Правильный пятиугольник ABCDE со стороной a вписан в окружность S. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной b (см. рис.). Сторона правильного пятиугольника, описанного около окружности S, равна c. Докажите, что  a2 + b2 = c2.


Прислать комментарий     Решение

Задача 103804

Темы:   [ Разные задачи на разрезания ]
[ Пятиугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 7,8

Автор: Ботин Д.А.

Можно ли разрезать на четыре остроугольных треугольника
  а) какой-нибудь выпуклый пятиугольник,
  б) правильный пятиугольник.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .