ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



Задача 55163

Темы:   [ Пятиугольники ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что сумма диагоналей выпуклого пятиугольника ABCDE больше периметра, но меньше удвоенного периметра.

Прислать комментарий     Решение


Задача 57058

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 9

Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.

Прислать комментарий     Решение

Задача 65669

Темы:   [ Пятиугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 4
Классы: 7,8,9

Автор: Обухов Б.

Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Найдите все возможные целые значения n.

Прислать комментарий     Решение

Задача 78713

Темы:   [ Пятиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
[ Центр поворотной гомотетии ]
[ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10

Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

Прислать комментарий     Решение

Задача 79429

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Существует ли пятиугольник со сторонами 3, 4, 9, 11 и 13 см, в который можно вписать окружность?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .