ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



Задача 116591

Темы:   [ Пятиугольники ]
[ Тригонометрический круг ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

Прислать комментарий     Решение

Задача 52978

Темы:   [ Пятиугольники ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Пятиугольник ABCD вписан в окружность единичного радиуса. Известно, что AB = $ \sqrt{2}$, $ \angle$ABE = 45o, $ \angle$EBD = 30o и BC = CD. Найдите площадь пятиугольника.

Прислать комментарий     Решение


Задача 64330

Темы:   [ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8

Существует ли пятиугольник, который одним прямолинейным разрезом можно разбить на три части так, что из двух частей можно будет сложить третью?

Прислать комментарий     Решение

Задача 64385

Темы:   [ Пятиугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

Прислать комментарий     Решение

Задача 64393

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

Пятиугольник ABCDE, все углы которого тупые, вписан в окружность ω. Продолжения сторон AB и CD пересекаются в точке E1; продолжения сторон BC и DE – в точке A1. Касательная, проведённая в точке B к описанной окружности треугольника BE1C, пересекает ω в точке B1; аналогично определяется точка D1. Докажите, что  B1D1 || AE.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .