Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 138]
|
|
Сложность: 5 Классы: 10,11
|
Пусть числа
uk определены как и в предыдущей
задаче. Докажите тождества:
а)
1 -
u1 +
u2 -
u3 +...+
u2n = 2
n(1 - cos
x)(1 - cos 3
x)...(1 - cos(2
n - 1)
x);
б)
1 -
u12 +
u22 -
u32 +...+
u2n2 = (- 1)
n.
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите суммы
а) 1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
б) Sn,k = (1·2·...·k)·(n(n – 1)...(n – k + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(n – k)) + ... + ((n – k + 1)(n – k + 2)...·n)·(k(k – 1)·...·1).
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что если числа a1, a2, ..., am отличны от нуля и для любого целого k = 0, 1, ..., n (n < m – 1) выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0, то в последовательности a1, a2, ..., am есть по крайней мере n + 1 пара соседних чисел, имеющих разные знаки.
|
|
Сложность: 5+ Классы: 9,10,11
|
а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и an ≤ n10 при любом n?
б) Тот же вопрос, если an ≤ n при любом n.
|
|
Сложность: 2 Классы: 5,6,7
|
Продолжите последовательность: 2, 6, 12, 20, 30, …
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 138]