ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли доску размером 5×5 заполнить доминошками размером 1×2? Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик? Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111. Илья всегда говорит правду, но когда ему задали дважды один и тот же вопрос, он дал на него разные ответы. Какой бы это мог быть вопрос? В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны. Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения. Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника. На плоскости дан угол, образованный двумя лучами a и b, и
некоторая точка M. а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин. Обозначим через S сумму следующего ряда: Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:
S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S Сумму S можно также найти
объединяя слагаемые ряда (12.1
) в пары:
S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.
Итак, действуя четырьмя разными способами, мы нашли четыре
значения суммы S:
S = Какое же значение
имеет сумма S в действительности?
У каждого марсианина три руки. Могут ли семь марсиан взяться за руки? Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. Найдите геометрическое место точек M, лежащих
внутри правильного треугольника ABC, для которых
MA2 = MB2 + MC2.
Докажите, что для любого натурального n в десятичной записи чисел 2002n и 2002n + 2n одинаковое число цифр. Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001). |
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]
Два правильных тетраэдра ABCD и MNPQ расположены так, что плоскости BCD и NPQ совпадают, вершина M лежит на высоте AO первого тетраэдра, а плоскость MNP проходит через центр грани ABC и середину ребра BD. Найдите отношение длин рёбер тетраэдров.
В трапеции ABCD с основаниями AD и BC на стороне AB взята такая точка E, что AE : BE = AD : BC. Точка H – проекция точки D на прямую CE.
На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что ∠AXY = 2∠C, ∠CYX = 2∠A.
Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке