ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Задано правило, которое каждой паре чисел x, y ставит в соответствие некоторое число x*y, причём для любых x, y, z выполняются тождества:
  1)  x*x = 0,
  2)  x*(y*z) = (x*y) + z.
Найдите 1993*1932.

Вниз   Решение


Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

ВверхВниз   Решение


Авторы: Mudgal A., Tejaswi N.V.

Дан вписанный пятиугольник $APBCQ$. Точка $M$ внутри треугольника $ABC$ такова, что $\angle MAB=\angle MCA$, $\angle MAC=\angle MBA$ и $\angle PMB=\angle QMC=90^{\circ}$. Докажите, что прямые $AM$, $BP$ и $CQ$ пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 102721

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3-
Классы: 8,9,10

Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

Прислать комментарий     Решение


Задача 102723

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.

Прислать комментарий     Решение


Задача 102722

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Прислать комментарий     Решение


Задача 66797

Темы:   [ Геометрия на клетчатой бумаге ]
[ Окружности (прочее) ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9,10,11

На клетчатой бумаге нарисовали треугольник, один из углов которого равен $45^{\circ}$ (см.рис.). Найдите значения остальных углов.

Прислать комментарий     Решение

Задача 35243

Темы:   [ Длины сторон (неравенства) ]
[ Окружности (прочее) ]
[ Окружности (построения) ]
Сложность: 3+
Классы: 7,8,9

Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .