Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 965]
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и P(19) = P(94) = 1994.
|
|
Сложность: 4 Классы: 10,11
|
Рассматриваются такие квадратичные функции f(x) = ax² + bx + c, что a < b и f(x) ≥ 0 для всех x.
Какое наименьшее значение может принимать выражение a+b+c/b–a ?
|
|
Сложность: 4 Классы: 8,9,10
|
Даны натуральные числа m и n. Докажите, что число 2n – 1 делится на число (2m – 1)² тогда и только тогда, когда число n делится на число m(2m – 1).
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что можно выбрать такие различные действительные числа a1, a2, ..., a10, что уравнение
(x – a1)(x – a2)...(x – a10) = (x + a1)(x + a2)...(x + a10) будет иметь ровно пять различных действительных корней.
|
|
Сложность: 4 Классы: 8,9,10
|
Даны целые числа a, b и c, c ≠ b. Известно, что квадратные трёхчлены ax² + bx + c и (c – b)x² + (c – a)x + (a + b) имеют общий корень (не обязательно целый). Докажите, что a + b + 2c делится на 3.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 965]