Страница: 1
2 3 4 5 6 7 >> [Всего задач: 12598]
Биссектриса внешнего угла при вершине
C треугольника
ABC
пересекает описанную окружность в точке
D. Докажите, что
AD =
BD.
Докажите, что из точки
A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от
A до точек
касания) равны.
Две окружности пересекаются в точках
A и
B. Точка
X
лежит на прямой
AB, но не на отрезке
AB. Докажите,
что длины всех касательных, проведенных из точки
X к окружностям,
равны.
Пусть
a и
b — длины катетов прямоугольного
треугольника,
c — длина его гипотенузы. Докажите, что:
а) радиус вписанной окружности треугольника равен (
a +
b -
c)/2;
б) радиус окружности, касающейся гипотенузы и продолжений катетов,
равен (
a +
b +
c)/2.
|
|
Сложность: 2- Классы: 8,9,10
|
Докажите, что площадь выпуклого четырехугольника
равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 12598]