Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 416]
Существуют ли на плоскости три такие точки
A,
B и
C, что для
любой точки
X длина хотя бы одного из
отрезков
XA,
XB и
XC иррациональна?
|
|
Сложность: 4+ Классы: 10,11
|
Пусть
(1 +
+
)
n =
pn +
qn +
rn +
sn
(
n 0). Найдите:
а)
;
б)
;
в)
.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется
неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?
|
|
Сложность: 4+ Классы: 9,10,11
|
Играют двое; один из них загадывает набор из целых чисел (
x1,
x2,...,
xn)
-- однозначных, как положительных, так и отрицательных. Второму разрешается
спрашивать, чему равна сумма
a1x1 + ... +
anxn, где
(
a1...
an)
-- любой набор. Каково наименьшее число вопросов, за которое отгадывающий
узнает задуманный набор?
|
|
Сложность: 4+ Классы: 10,11
|
Докажите, что при всех
x ,
0
<x<π /3
, справедливо неравенство
sin 2x+ cos x>1.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 416]