Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 416]
|
|
Сложность: 5 Классы: 9,10,11
|
Вычислите квадратный корень из числа 0,111...111
(100 единиц) с точностью до
а) 100; б) 101; в)* 200 знаков после запятой.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
|
|
Сложность: 5 Классы: 9,10,11
|
Две прямые на плоскости пересекаются под углом
. На одной из них сидит
блоха. Каждую секунду она прыгает с одной прямой на другую (точка пересечения
считается принадлежащей обеим прямым). Известно, что длина каждого её прыжка
равна 1 и что она никогда не возвращается на то место, где была секунду
назад. Через некоторое время блоха вернулась в первоначальную точку. Докажите,
что угол
измеряется рациональным числом градусов.
|
|
Сложность: 5 Классы: 10,11
|
Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть
из точки x либо в точку x/31/2, либо в точку
x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Докажите, что, начиная из любой точки, кузнечик может через несколько
прыжков оказаться на расстоянии меньше 1/100 от точки a.
|
|
Сложность: 5 Классы: 10,11
|
Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость,
которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость,
пересекающая все семь пирамид по треугольникам равной площади.
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 416]