Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 122]
|
|
Сложность: 4+ Классы: 9,10,11
|
Из некоторой точки D в плоскости треугольника ABC провели прямые, перпендикулярные к отрезкам DA, DB, DC, которые пересекают прямые BC, AC, AB в точках A1, B1, C1 соответственно. Докажите, что середины отрезков AA1, BB1, CC1 лежат на одной прямой.
|
|
Сложность: 4+ Классы: 9,10
|
На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный остроугольный треугольник ABC. Точки A1, A2 симметричны основаниям внутренней и внешней биссектрис угла A относительно середины стороны BC. На отрезке A1A2 как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.
|
|
Сложность: 4+ Классы: 9,10,11
|
В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$.
Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре.
Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке.
|
|
Сложность: 5- Классы: 9,10,11
|
AA1, BB1, CC1 – высоты треугольника ABC, B0 – точка пересечения BB1 и описанной окружности Ω, Q – вторая точка пересечения Ω и описанной окружности ω треугольника A1C1B0. Докажите, что BQ – симедиана треугольника ABC.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 122]