Страница:
<< 85 86 87 88
89 90 91 >> [Всего задач: 2247]
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
Дана трапеция ABCD с основанием AD. Центр описанной окружности треугольника ABC лежит на прямой BD.
Докажите, что центр описанной окружности треугольника ABD лежит на прямой AC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Диагонали выпуклого четырехугольника делят его на четыре подобных треугольника. Докажите, что в него можно вписать окружность.
|
|
Сложность: 3+ Классы: 8,9,10
|
Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что AM = MD. Докажите, что ∠PMB = ∠QMB.
Внутри параллелограмма ABCD расположена точка М. Сравните периметр параллелограмма и сумму расстояний от М до его вершин.
Страница:
<< 85 86 87 88
89 90 91 >> [Всего задач: 2247]