ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 2247]      



Задача 78133

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны точки A и B. Построить такой квадрат, чтобы точки A и B лежали на его границе и сумма расстояний от точки A до вершин квадрата была наименьшей.
Прислать комментарий     Решение


Задача 78690

Тема:   [ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Прислать комментарий     Решение

Задача 86518

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ ГМТ и вписанный угол ]
[ Вписанный угол равен половине центрального ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

Диагонали равнобокой трапеции АВСD с боковой стороной АВ пересекаются в точке Р. Верно ли, что центр окружности, описанной около трапеции, лежит на окружности, описанной около треугольника ABP?
Прислать комментарий     Решение


Задача 97960

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

Прислать комментарий     Решение

Задача 98337

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .