ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 2247]      



Задача 65639

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 6,7,8

Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой.
Докажите, что тогда точки D, F и E также лежат на одной прямой.

Прислать комментарий     Решение

Задача 65720

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный.

Прислать комментарий     Решение

Задача 65750

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Диагонали AC и BD вписанного четырёхугольника ABCD пересекаются в точке P. Точка Q выбрана на отрезке BC так, что  PQAC.
Докажите, что прямая, проходящая через центры описанных окружностей ω1 и ω2 треугольников APD и BQD, параллельна прямой AD.

Прислать комментарий     Решение

Задача 65792

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Тригуб А.

В четырёхугольнике ABCD  ∠B = ∠D = 90°  и  AC = BC + DC.  Точка P на луче BD такова, что  BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.

Прислать комментарий     Решение

Задача 65804

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Покрытия ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.

Прислать комментарий     Решение

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .