Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 2247]
Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.
В выпуклом четырёхугольнике ABCD выполнены соотношения AB = BD, ∠ABD = ∠DBC. На диагонали BD нашлась такая точка K, что BK = BC.
Докажите, что ∠KAD = ∠KCD.
В выпуклом четырёхугольнике ABCD AD = АВ + CD. Оказалось, что биссектриса угла А проходит через середину стороны ВС.
Докажите, что биссектриса угла D также проходит через середину ВС.
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность, АС = а, BD = b, AB ⊥ CD. Найдите радиус окружности.
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадрат ABCD и равносторонний треугольник MKL расположены так, как это показано на рисунке. Найдите угол PQD.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 2247]