ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 2247]      



Задача 64672

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 10,11

В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла?

Прислать комментарий     Решение

Задача 64710

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три прямые, пересекающиеся в одной точке ]
[ Конкуррентность высот. Углы между высотами. ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.

Прислать комментарий     Решение

Задача 64755

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+

В трапеции ABCD  BC < AD,  AB = CD,  K – середина AD, M – середина CD, CH – высота.
Докажите, что прямые AM, CK и BH пересекаются в одной точке.

Прислать комментарий     Решение

Задача 64804

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 9,10

Пусть ABCD – вписанный четырёхугольник. Докажите, что  AC > BD  тогда и только тогда, когда  (AD – BC)(AB – CD) > 0.

Прислать комментарий     Решение

Задача 64812

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Проекция на прямую (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .