ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 2247]      



Задача 64537

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD квадрата ABCD отмечены точки M и K соответственно так, что  ∠BAM = ∠CKM = 30°.  Найдите ∠AKD.

Прислать комментарий     Решение

Задача 64588

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 9,10,11

Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
Докажите, что радиусы описанных окружностей треугольников PKL, PLM, PMN и PNK равны.

Прислать комментарий     Решение

Задача 64602

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.

Прислать комментарий     Решение

Задача 64648

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 10,11

В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.

Прислать комментарий     Решение

Задача 64650

Темы:   [ Четырехугольники (прочее) ]
[ Задачи на движение ]
[ Неравенство треугольника (прочее) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

Дан выпуклый четырёхугольник ABCD. Пешеход Петя выходит из вершины A, идёт по стороне AB и далее по контуру четырёхугольника. Пешеход Вася выходит из вершины A одновременно с Петей, идёт по диагонали AC и одновременно с Петей приходит в C. Пешеход Толя выходит из вершины B в тот момент, когда её проходит Петя, идёт по диагонали BD и одновременно с Петей приходит в D. Скорости пешеходов постоянны.
Могли ли Вася и Толя прийти в точку пересечения диагоналей O одновременно?

Прислать комментарий     Решение

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .