Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 2247]
На сторонах BC и CD квадрата ABCD отмечены точки M и K соответственно так, что ∠BAM = ∠CKM = 30°. Найдите ∠AKD.
|
|
Сложность: 3+ Классы: 9,10,11
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
Докажите, что радиусы описанных окружностей треугольников PKL, PLM, PMN и PNK равны.
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.
|
|
Сложность: 3+ Классы: 10,11
|
В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый четырёхугольник ABCD. Пешеход Петя выходит из вершины A, идёт по стороне AB и далее по контуру четырёхугольника. Пешеход Вася выходит из вершины A одновременно с Петей, идёт по диагонали AC и одновременно с Петей приходит в C. Пешеход Толя выходит из вершины B в тот момент, когда её проходит Петя, идёт по диагонали BD и одновременно с Петей приходит в D. Скорости пешеходов постоянны.
Могли ли Вася и Толя прийти в точку пересечения диагоналей O одновременно?
Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 2247]